Kai Sheng Tai, Richard Socher, and Christopher D. Manning, Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks, arXiv:1503.00075 / ACL 2015 [Paper]
Samuel R. Bowman, Christopher D. Manning, and Christopher Potts, Tree-structured composition in neural networks without tree-structured architectures, arXiv:1506.04834 [Paper]
Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James
Bradbury, Ishaan Gulrajani, Victor Zhong, Romain Paulus, Richard Socher,
"Ask Me Anything: Dynamic Memory Networks for Natural Language
Processing", arXiv:1506.07285
Surveys
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning, Nature 2015
Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, Jurgen Schmidhuber, LSTM: A Search Space Odyssey, arXiv:1503.04069
Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan "Honza" Cernocky, Sanjeev Khudanpur, Recurrent Neural Network based Language Model, Interspeech 2010 [Paper]
Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan "Honza" Cernocky, Sanjeev Khudanpur, Extensions of Recurrent Neural Network Language Model, ICASSP 2011 [Paper]
Stefan Kombrink, Tomas Mikolov, Martin Karafiat, Lukas Burget, Recurrent Neural Network based Language Modeling in Meeting Recognition, Interspeech 2011 [Paper]
Jiwei Li, Minh-Thang Luong, and Dan Jurafsky, A Hierarchical Neural Autoencoder for Paragraphs and Documents, ACL 2015 [Paper], [Code]
Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, and Richard S. Zemel, Skip-Thought Vectors, arXiv:1506.06726 / NIPS 2015 [Paper]
Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush, Character-Aware Neural Language Models, arXiv:1508.06615 [Paper]
Xingxing Zhang, Liang Lu, and Mirella Lapata, Tree Recurrent Neural Networks with Application to Language Modeling, arXiv:1511.00060 [Paper]
Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston, The Goldilocks Principle: Reading children's books with explicit memory representations, arXiv:1511.0230 [Paper]
Speech Recognition
Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N. Sainath, and Brian Kingsbury, Deep Neural Networks for Acoustic Modeling in Speech Recognition, IEEE Signam Processing Magazine 2012 [Paper]
Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton, Speech Recognition with Deep Recurrent Neural Networks, arXiv:1303.5778 / ICASSP 2013 [Paper]
Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio, Attention-Based Models for Speech Recognition, arXiv:1506.07503 / NIPS 2015 [Paper]
HaĆim Sak, Andrew Senior, Kanishka Rao, and Françoise Beaufays. Fast and Accurate Recurrent Neural Network Acoustic Models for Speech Recognition, arXiv:1507.06947 2015 [Paper].
Nal Kalchbrenner and Phil Blunsom, Recurrent Continuous Translation Models, EMNLP 2013
Univ. Montreal
Kyunghyun Cho, Bart van Berrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio, Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation, arXiv:1406.1078 / EMNLP 2014 [Paper]
Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio, On the Properties of Neural Machine Translation: Encoder-Decoder Approaches, SSST-8 2014 [Paper]
Jean Pouget-Abadie, Dzmitry Bahdanau, Bart van Merrienboer, Kyunghyun Cho, and Yoshua Bengio, Overcoming the Curse of Sentence Length for Neural Machine Translation using Automatic Segmentation, SSST-8 2014
Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, arXiv:1409.0473 / ICLR 2015 [Paper]
Sebastian Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio, On using very large target vocabulary for neural machine translation, arXiv:1412.2007 / ACL 2015 [Paper]
Univ. Montreal + Middle East Tech. Univ. + Univ. Maine [Paper]
Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun Cho, Loic
Barrault, Huei-Chi Lin, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio, On Using Monolingual Corpora in Neural Machine Translation, arXiv:1503.03535
Minh-Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol Vinyals, and Wojciech Zaremba, Addressing the Rare Word Problem in Neural Machine Transltaion, arXiv:1410.8206 / ACL 2015
Minh-Thang Luong, Hieu Pham, and Christopher D. Manning, Effective Approaches to Attention-based Neural Machine Translation, arXiv:1508.04025
Middle East Tech. Univ. + NYU + Univ. Montreal [Paper]
Orhan Firat, Kyunghyun Cho, and Yoshua Bengio, Multi-Way, Multilingual Neural Machine Translation with a Shared Attention Mechanism, arXiv:1601.01073
Conversation Modeling
Lifeng Shang, Zhengdong Lu, and Hang Li, Neural Responding Machine for Short-Text Conversation, arXiv:1503.02364 / ACL 2015 [Paper]
Oriol Vinyals and Quoc V. Le, A Neural Conversational Model, arXiv:1506.05869 [Paper]
Ryan Lowe, Nissan Pow, Iulian V. Serban, and Joelle Pineau, The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems, arXiv:1506.08909 [Paper]
Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine Bordes, Sumit Chopra, Alexander Miller, Arthur Szlam, and Jason Weston, Evaluating Prerequisite Qualities for Learning End-to-End Dialog Systems, arXiv:1511.06931 [Paper]
Jason Weston, Dialog-based Language Learning, arXiv:1604.06045, [Paper]
Antoine Bordes and Jason Weston, Learning End-to-End Goal-Oriented Dialog, arXiv:1605.07683 [Paper]
Question Answering
FAIR
Jason Weston, Antoine Bordes, Sumit Chopra, Tomas Mikolov, and Alexander M. Rush, Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks, arXiv:1502.05698 [Web] [Paper]
Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston, Simple Question answering with Memory Networks, arXiv:1506.02075 [Paper]
Felix Hill, Antoine Bordes, Sumit Chopra, Jason Weston, "The
Goldilocks Principle: Reading Children's Books with Explicit Memory
Representations", ICLR 2016 [Paper]
Karl M. Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom, Teaching Machines to Read and Comprehend, arXiv:1506.03340 / NIPS 2015
Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert
English, Brian Pierce, Peter Ondruska, Mohit Iyyer, Ishaan Gulrajani,
and Richard Socher, Ask Me Anything: Dynamic Memory Networks for Natural Language Processing, arXiv:1506.07285
Computer Vision
Object Recognition
Pedro Pinheiro and Ronan Collobert, Recurrent Convolutional Neural Networks for Scene Labeling, ICML 2014 [Paper]
Ming Liang and Xiaolin Hu, Recurrent Convolutional Neural Network for Object Recognition, CVPR 2015 [Paper]
Wonmin Byeon, Thomas Breuel, Federico Raue1, and Marcus Liwicki1, Scene Labeling with LSTM Recurrent Neural Networks, CVPR 2015 [Paper]
Mircea Serban Pavel, Hannes Schulz, and Sven Behnke, Recurrent Convolutional Neural Networks for Object-Class Segmentation of RGB-D Video, IJCNN 2015 [Paper]
Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav
Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip H. S. Torr, Conditional Random Fields as Recurrent Neural Networks, arXiv:1502.03240 [Paper]
Xiaodan Liang, Xiaohui Shen, Donglai Xiang, Jiashi Feng, Liang Lin, and Shuicheng Yan, Semantic Object Parsing with Local-Global Long Short-Term Memory, arXiv:1511.04510 [Paper]
Sean Bell, C. Lawrence Zitnick, Kavita Bala, and Ross Girshick, Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks, arXiv:1512.04143 / ICCV 2015 workshop [Paper]
Visual Tracking
Quan Gan, Qipeng Guo, Zheng Zhang, and Kyunghyun Cho, First Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks, arXiv:1511.06425 [Paper]
Image Generation
Karol Gregor, Ivo Danihelka, Alex Graves, Danilo J. Rezende, and Daan Wierstra, DRAW: A Recurrent Neural Network for Image Generation, ICML 2015 [Paper]
Angeliki Lazaridou, Dat T. Nguyen, R. Bernardi, and M. Baroni, Unveiling the Dreams of Word Embeddings: Towards Language-Driven Image Generation, arXiv:1506.03500 [Paper]
Lucas Theis and Matthias Bethge, Generative Image Modeling Using Spatial LSTMs, arXiv:1506.03478 / NIPS 2015 [Paper]
Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu, Pixel Recurrent Neural Networks, arXiv:1601.06759 [Paper]
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L. Yuille, Explain Images with Multimodal Recurrent Neural Networks, arXiv:1410.1090
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille, Deep Captioning with Multimodal Recurrent Neural Networks (m-RNN), arXiv:1412.6632 / ICLR 2015
Ryan Kiros, Ruslan Salakhutdinov, and Richard S. Zemel, Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, arXiv:1411.2539 / TACL 2015
Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell, Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389 / CVPR 2015
Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li
Deng, Piotr Dollar, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John
C. Platt, Lawrence Zitnick, and Geoffrey Zweig, From Captions to Visual Concepts and Back, arXiv:1411.4952 / CVPR 2015
Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio, Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention, arXiv:1502.03044 / ICML 2015
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan L. Yuille, Learning like a Child: Fast Novel Visual Concept Learning from Sentence Descriptions of Images, arXiv:1504.06692
MS + Berkeley
Jacob Devlin, Saurabh Gupta, Ross Girshick, Margaret Mitchell, and C. Lawrence Zitnick, Exploring Nearest Neighbor Approaches for Image Captioning, arXiv:1505.04467 (Note: technically not RNN) [Paper]
Jacob Devlin, Hao Cheng, Hao Fang, Saurabh Gupta, Li Deng, Xiaodong He, Geoffrey Zweig, and Margaret Mitchell, Language Models for Image Captioning: The Quirks and What Works, arXiv:1505.01809 [Paper]
Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell, Long-term Recurrent Convolutional Networks for Visual Recognition and Description, arXiv:1411.4389 / CVPR 2015
Subhashini Venugopalan, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, and Kate Saenko, Translating Videos to Natural Language Using Deep Recurrent Neural Networks, arXiv:1412.4729
Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko, Sequence to Sequence--Video to Text, arXiv:1505.00487
Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo Larochelle, and Aaron Courville, Describing Videos by Exploiting Temporal Structure, arXiv:1502.08029
Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler, Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books, arXiv:1506.06724
Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, Yueting Zhuang, Hierarchical Recurrent Neural Encoder for Video Representation with Application to Captioning, arXiv:1511.03476
Li Yao, Nicolas Ballas, Kyunghyun Cho, John R. Smith, and Yoshua Bengio, Empirical performance upper bounds for image and video captioning, arXiv:1511.04590
Hauyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang, Lei Wang, and Wei Xu, Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering, arXiv:1505.05612 / NIPS 2015
Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach, Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding, arXiv:1606.01847
Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio Torralba,
Raquel Urtasun, Sanja Fidler, MovieQA: Understanding Stories in Movies
through Question-Answering, arXiv:1512.02902
Turing Machines
A.Graves, G. Wayne, and I. Danihelka., Neural Turing Machines, arXiv preprint arXiv:1410.5401 [Paper]
Jason Weston, Sumit Chopra, Antoine Bordes, Memory Networks, arXiv:1410.3916 [Paper]
Armand Joulin and Tomas Mikolov, Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets, arXiv:1503.01007 / NIPS 2015 [Paper]
Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus, End-To-End Memory Networks, arXiv:1503.08895 / NIPS 2015 [Paper]
Wojciech Zaremba and Ilya Sutskever, Reinforcement Learning Neural Turing Machines, arXiv:1505.00521 [Paper]
Baolin Peng and Kaisheng Yao, Recurrent Neural Networks with External Memory for Language Understanding, arXiv:1506.00195 [Paper]
Fandong Meng, Zhengdong Lu, Zhaopeng Tu, Hang Li, and Qun Liu, A Deep Memory-based Architecture for Sequence-to-Sequence Learning, arXiv:1506.06442 [Paper]
Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever, Neural Programmer: Inducing Latent Programs with Gradient Descent, arXiv:1511.04834 [Paper]
Scott Reed and Nando de Freitas, Neural Programmer-Interpreters, arXiv:1511.06279 [Paper]
Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever, Neural Random-Access Machines, arXiv:1511.06392 [Paper]
Ćukasz Kaiser and Ilya Sutskever, Neural GPUs Learn Algorithms, arXiv:1511.08228 [Paper]
Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus, Learning Simple Algorithms from Examples, arXiv:1511.07275 [Paper]
Robotics
Hongyuan Mei, Mohit Bansal, and Matthew R. Walter, Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, arXiv:1506.04089 [Paper]
Marvin Zhang, Sergey Levine, Zoe McCarthy, Chelsea Finn, and Pieter Abbeel, Policy Learning with Continuous Memory States for Partially Observed Robotic Control, arXiv:1507.01273. [Paper]
Other
Alex Graves, Generating Sequences With Recurrent Neural Networks, arXiv:1308.0850 [Paper]
Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu, Recurrent Models of Visual Attention, NIPS 2014 / arXiv:1406.6247 [Paper]
Wojciech Zaremba and Ilya Sutskever, Learning to Execute, arXiv:1410.4615 [Paper] [Code]
Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer, Scheduled Sampling for Sequence Prediction with
Recurrent Neural Networks, arXiv:1506.03099 / NIPS 2015 [Paper]
Bing Shuai, Zhen Zuo, Gang Wang, and Bing Wang, DAG-Recurrent Neural Networks For Scene Labeling, arXiv:1509.00552 [Paper]
Soren Kaae Sonderby, Casper Kaae Sonderby, Lars Maaloe, and Ole Winther, Recurrent Spatial Transformer Networks, arXiv:1509.05329 [Paper]
Cesar Laurent, Gabriel Pereyra, Philemon Brakel, Ying Zhang, and Yoshua Bengio, Batch Normalized Recurrent Neural Networks, arXiv:1510.01378 [Paper]
Jiwon Kim, Jung Kwon Lee, Kyoung Mu Lee, Deeply-Recursive Convolutional Network for Image Super-Resolution, arXiv:1511.04491 [Paper]
Quan Gan, Qipeng Guo, Zheng Zhang, and Kyunghyun Cho, First Step toward Model-Free, Anonymous Object Tracking with Recurrent Neural Networks, arXiv:1511.06425 [Paper]
Francesco Visin, Kyle Kastner, Aaron Courville, Yoshua Bengio, Matteo Matteucci, and Kyunghyun Cho, ReSeg: A Recurrent Neural Network for Object Segmentation, arXiv:1511.07053 [Paper]
Juergen Schmidhuber, On Learning to Think: Algorithmic
Information Theory for Novel Combinations of Reinforcement Learning
Controllers and Recurrent Neural World Models, arXiv:1511.09249 [Paper]
IEEE Final Year projects IEEE Project Center in Chennai are consistently sought after. Final Year Students Projects take a shot at them to improve their aptitudes, while specialists like the enjoyment in interfering with innovation. For experts, it's an alternate ball game through and through. Smaller than expected IEEE Final Year project centers ground for all fragments of CSE & IT engineers hoping to assemble. Final Year Project Domains for IT It gives you tips and rules that is progressively critical to consider while choosing any final year project point.
Excellent post, thanks for this. I gathered lots of information from this and I am happy about it. Do share more updates.
ReplyDeleteUiPath Training in Chennai
RPA UiPath Training
Blue Prism Training in Chennai
Blue Prism Training Institute in Chennai
RPA Training in Chennai
RPA course in Chennai
RPA Training Institute in Chennai
RPA Training in Tambaram
Blue Prism Training in Anna Nagar
IEEE Final Year projects IEEE Project Center in Chennai are consistently sought after. Final Year Students Projects take a shot at them to improve their aptitudes, while specialists like the enjoyment in interfering with innovation. For experts, it's an alternate ball game through and through. Smaller than expected IEEE Final Year project centers ground for all fragments of CSE & IT engineers hoping to assemble. Final Year Project Domains for IT It gives you tips and rules that is progressively critical to consider while choosing any final year project point.
DeleteJavaScript Training in Chennai
JavaScript Training in Chennai